История возникновения и развития технологий баз данных. Презентация на тему: История развития баз данных Развитие бд


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Введение. История развития баз данных

2. Файлы и файловые системы

3. Первый этап -- базы данных на больших ЭВМ

4. Второй этап - эпоха персональных компьютеров

5. Третий этап - распределенные базы данных

6. Четвертый этап - перспективы развития систем

управления базами данных

7. Типы данных СУБД MySQL

a. Числовые типы

b. Текстовые типы данных

c. Типы даты и времени

8. Перспективы развития сетевых баз данных

Список литературы

1. Введен ие. История развития баз данных

В истории вычислительной техники можно проследить развитие двух основных областей ее использования. Первая область -- применение вычислительной техники для выполнения численных расчетов, которые слишком долго или вообще невозможно производить вручную. Развитие этой области способствовало интенсификации методов численного решения сложных математических задач, появлению языков программирования, ориентированных на удобную запись численных алгоритмов, становлению обратной связи с разработчиками новых архитектур ЭВМ. Характерной особенностью данной области применения вычислительной техники является наличие сложных алгоритмов обработки, которые применяются к простым по структуре данным, объем которых сравнительно невелик.

Вторая область -- это использование средств вычислительной техники в автоматических или автоматизированных информационных системах. Информационная система представляет собой программно-аппаратный комплекс, обеспечивающий выполнение следующих функций:

надежное хранение информации в памяти компьютера;

выполнение специфических для данного приложения преобразований информации и вычислений;

предоставление пользователям удобного и легко осваиваемого интерфейса.

Обычно такие системы имеют дело с большими объемами информации, имеющей достаточно сложную структуру. Классическими примерами информационных систем являются банковские системы, автоматизированные системы управления предприятиями, системы резервирования авиационных и железнодорожных билетов, мест в гостиницах и т.д.

Вторая область использования вычислительной техники возникла несколько позже первой. Это связано с тем, что на заре вычислительной техники возможности компьютеров по хранению информации были очень ограниченными. Говорить о надежном и долговременном хранении информации можно только при наличии запоминающих устройств, сохраняющих информацию после выключения электрического питания. Оперативная (основная) память компьютеров этим свойством обычно не обладает. В первых компьютерах использовались два вида устройств внешней памяти -- магнитные ленты и барабаны. Емкость магнитных лент была достаточно велика, но по своей физической природе они обеспечивали последовательный доступ к данным. Магнитные же барабаны (они ближе всего к современным магнитным дискам с фиксированными головками) давали возможность произвольного доступа к данным, но имели ограниченный объем хранимой информации.

Эти ограничения не являлись слишком существенными для чисто численных расчетов, Даже если программа должна обработать (или произвести) большой объем информации, при программировании можно продумать расположение этой информации во внешней памяти (например, на последовательной магнитной ленте), обеспечивающее эффективное выполнение этой программы. Однако в информационных системах совокупность взаимосвязанных информационных объектов фактически отражает модель объектов реального мира. А потребность пользователей в информации, адекватно отражающей состояние реальных объектов, требует сравнительно быстрой реакции системы на их запросы. И в этом случае наличие сравнительно медленных устройств хранения данных, к которым относятся магнитные ленты и барабаны, было недостаточным.

Можно предположить, что именно требования нечисловых приложений вызвали появление съемных магнитных дисков с подвижными головками, что явилось революцией в истории вычислительной техники. Эти устройства внешней памяти обладали существенно большей емкостью, чем магнитные барабаны, обеспечивали удовлетворительную скорость доступа к данным в режиме произвольной выборки, а возможность смены дискового пакета на устройстве позволяла иметь практически неограниченный архив данных.

С появлением магнитных дисков началась история систем управления данными во внешней памяти. До этого каждая прикладная программа, которой требовалось хранить данные во внешней памяти, сама определяла расположение каждой порции данных на магнитной ленте или барабане и выполняла обмены между оперативной памятью и устройствами внешней памяти с помощью программно-аппаратных средств низкого уровня (машинных команд или вызовов соответствующих программ операционной системы). Такой режим работы не позволяет или очень затрудняет поддержание на одном внешнем носителе нескольких архивов долговременно хранимой информации. Кроме того, каждой прикладной программе приходилось решать проблемы именования частей данных и структуризации данных во внешней памяти.

2. Файлы и файловые системы

Важным шагом в развитии именно информационных систем явился переход к использованию централизованных систем управления файлами. С точки зрения прикладной программы, файл -- это именованная область внешней памяти, и которую можно записывать и из которой можно считывать данные. Правила именования файлов, способ доступа к данным, хранящимся в файле, и структура этих данных зависят от конкретной системы управления файлами и, возможно, от типа файла. Система управления файлами берет на себя распределение внешней памяти, отображение имен файлов в соответствующие адреса во внешней памяти и обеспечение доступа к данным.

Такие системы иногда называются файловыми. Несмотря на относительную простоту организации, файловые системы имеют ряд недостатков:

Избыточность данных. Файловые системы характеризуются значительной избыточностью, поскольку нередко для решения различных задач управления используются одни и одни и те же данные, размещенные в разных файлах. Из-за дублирования данных в разных файлах память на внешних запоминающих устройствах используется неэкономно, информация одного и одного и того же объекта управления распределяется между многими файлами. При этом довольно тяжело представить общую информационную модель предметной области.

Несогласованность данных. Учитывая, что одна и одна и та же информация может размещаться в разных файлах, технологически тяжело проследить за внесением изменений одновременно во все файлы. Из-за этого может возникнуть несогласованность данных, когда одно и одно и то же поле в разных файлах может иметь разные значения.

Зависимость структур данных и прикладных программ. При файловой организации логическая и физическая структуры файла должны соответствовать их описанию в прикладной программе. Прикладная программа должна быть модифицирована при любом изменении логической или физической структуры файла. Поскольку изменения в одной программе часто требуют внесения изменений в другие информационно-связанные программы, то иногда проще создать новую программу, чем вносить изменения в старую. Поэтому этот недостаток файловых систем приводит к значительному увеличению стоимости сопровождения программных средств. Иногда стоимость сопровождения программных средств может достигать близко 70 % стоимости их разработки.

Пользователи видят файл как линейную последовательность записей и могут выполнить над ним ряд стандартных операций:

создать файл (требуемого типа и размера);

записать в файл на место текущей записи новую, добавить новую запись в конец файла.

В разных файловых системах эти операции могли несколько отличаться, но общий смысл их был именно таким. Главное, что следует отметить, это то, что структура записи файла была известна только программе, которая с ним работала, система управления файлами не знала ее. И поэтому для того, чтобы извлечь некоторую информацию из файла, необходимо было точно знать структуру записи файла с точностью до бита. Каждая программа, работающая с файлом, должна была иметь у себя внутри структуру данных, соответствующую структуре этого файла. Поэтому при изменении структуры файла требовалось изменять структуру программы, а это требовало новой компиляции, то есть процесса перевода программы в исполняемые машинные коды. Такая ситуации характеризовалась как зависимость программ от данных. Для информационных систем характерным является наличие большого числа различных пользователей (программ), каждый из которых имеет свои специфические алгоритмы обработки информации, хранящейся в одних и тех же файлах. Изменение структуры файла, которое было необходимо для одной программы, требовало исправления и перекомпиляции и дополнительной отладки всех остальных программ, работающих с этим же файлом. Это было первым существенным недостатком файловых систем, который явился толчком к созданию новых систем хранения и управления информацией.

Для иллюстрации обратимся к примеру, приведенному в книге: У. Девис, Операционные системы, М., Мир, 1980:

Несколько лет назад почтовое ведомство (из лучших побуждений) пришло к решению, что все адреса должны обязательно включать почтовый индекс. Во многих вычислительных центрах это, казалось бы, незначительное изменение привело к ужасным последствиям. Добавление к адресу нового поля, содержащего шесть символов, означало необходимость внесения изменений в каждую программу, использующую данные этой задачи в соответствии с изменившейся суммарной длиной полей. Тот факт, что какой-то программе для выполнения ее функций не требуется знания почтового индекса, во внимание не принимался: если в некоторой программе содержалось обращение к новой, более длинной записи, то в такую программу вносились изменения, обеспечивающие дополнительное место в памяти.

В условиях автоматизированного управления централизованной базой данных все такие изменения связаны с функциями управляющей программы базы данных. Программы, не использующие значения почтового индекса, не нуждаются в модификации - в них, как и прежде, в соответствии с запросами посылаются те же элементы данных. В таких случаях внесенное изменение неощутимо. Модифицировать необходимо только те программы, которые пользуются новым элементом данных».

Далее, поскольку файловые системы являются общим хранилищем файлов, принадлежащих, вообще говоря, разным пользователям, системы управления файлами должны обеспечивать авторизацию доступа к файлам. В общем виде подход состоит в том, что по отношению к каждому зарегистрированному пользователю данной вычислительной системы для каждого существующего файла указываются действия, которые разрешены или запрещены данному пользователю. В большинстве современных систем управления файлами применяется подход к защите файлов, впервые реализованный в ОС UNIX. В этой ОС каждому зарегистрированному пользователю соответствует пара целочисленных идентификаторов: идентификатор группы, к которой относится этот пользователь, и его собственный идентификатор в группе. При каждом файле хранится полный идентификатор пользователя, который создал этот файл, и фиксируется, какие действия с файлом может производить его создатель, какие действия с файлом доступны для других пользователей той же группы и что могут делать с файлом пользователи других групп. Администрирование режимом доступа к файлу в основном выполняется его создателем-владельцем, Для множества файлов, отражающих информационную модель одной предметной области, такой децентрализованный принцип управления доступом вызывал дополнительные трудности. И отсутствие централизованных методов управления доступом к информации послужило еще одной причиной разработки СУБД.

Следующей причиной стала необходимость обеспечения эффективной параллельной работы многих пользователей с одними и теми же файлами. В общем случае системы управления файлами обеспечивали режим многопользовательского доступа, Если операционная система поддерживает многопользовательский режим, вполне реальна ситуация, когда два или более пользователя одновременно пытаются работать с одним и тем же файлом. Если все пользователи собираются только читать файл, ничего страшного не произойдет. Но если хотя бы один из них будет изменять файл, для корректной работы этих пользователей требуется взаимная синхронизация их действий по отношению к файлу.

В системах управления файлами обычно применялся следующий подход. В операции открытия файла (первой и обязательной операции, с которой должен начинаться сеанс работы с файлом) среди прочих параметров указывался режим работы (чтение или изменение). Если к моменту выполнения этой операции некоторым пользовательским процессом PR1 файл был уже открыт другим процессом PR2 в режиме изменения, то и зависимости от особенностей системы процессу PR1 либо сообщались и невозможности открытия файла, либо он блокировался до тех пор, пока в процессе PR2 не выполнялась операция закрытия файла.

При подобном способе организации одновременная работа нескольких пользователей, связанная с модификацией данных в файле, либо вообще не реализовывалась, либо была очень замедлена.

Эти недостатки послужили тем толчком, который заставил разработчиков информационных систем предложить новый подход к управлению информацией. Этот подход был реализован в рамках новых программных систем, названных впоследствии Системами Управления Базами Данных (СУБД), а сами хранилища информации, которые работали под управлением данных систем, назывались базами или банками данных (БД и БнД).

3. Первый этап -- базы данных на больших ЭВМ

История развития СУБД насчитывает более 30 лет. В 1968 году была введена в эксплуатацию первая промышленная СУБД система IMS фирмы IBM. В 1975 году появился первый стандарт ассоциации по языкам систем обработки данных -- Conference of Data System Languages (CODASYL), который определил ряд фундаментальных понятий в теории систем баз данных, которые и до сих пор являются основополагающими для сетевой модели данных.

В дальнейшее развитие теории баз данных большой вклад был сделан американским математиком Э.Ф. Коддом, который является создателем реляционной модели данных. В 1981 году Э.Ф. Кодд получил за создание реляционной модели и реляционной алгебры престижную премию Тьюринга Американской ассоциации по вычислительной технике.

Менее двух десятков лет прошло с этого момента, но стремительное развитие вычислительной техники, изменение ее принципиальной роли в жизни общества, обрушившийся бум персональных ЭВМ и, наконец, появление мощных рабочих станций и сетей ЭВМ повлияло также и на развитие технологии баз данных. Можно выделить четыре этапа в развитии данного направления в обработке данных. Однако необходимо заметить, что все же нет жестких временных ограничений в этих этапах: они плавно переходят один в другой и даже сосуществуют параллельно, но, тем не менее, выделение этих этапов позволит более четко охарактеризовать отдельные стадии развития технологии баз данных, подчеркнуть особенности, специфичные для конкретного этапа.

Первый этап развития СУБД связан с организацией баз данных на больших машинах типа IBM 360/370, ЕС-ЭВМ и мини-ЭВМ типа PDP11 (фирмы Digital Equipment Corporation -- DEC), разных моделях HP (фирмы Hewlett Packard).

Базы данных хранились во внешней памяти центральной ЭВМ, пользователями этих баз данных были задачи, запускаемые в основном в пакетном режиме. Интерактивный режим доступа обеспечивался с помощью консольных терминалов, которые не обладали собственными вычислительными ресурсами (процессором, внешней памятью) и служили только устройствами ввода-вывода для центральной ЭВМ. Программы доступа к БД писались на различных языках и запускались как обычные числовые программы. Мощные операционные системы обеспечивали возможность условно параллельного выполнения всего множества задач. Эти системы можно было отнести к системам распределенного доступа, потому что база данных была централизованной, хранилась на устройствах внешней памяти одной центральной ЭВМ, а доступ к ней поддерживался от многих пользователей-задач.

Особенности этого этапа развития выражаются в следующем:

Все СУБД базируются на мощных мультипрограммных операционных системах (MVS, SVM, RTE, OSRV, RSX, UNIX), поэтому в основном поддерживается работа с централизованной базой данных в режиме распределенного доступа.

Функции управления распределением ресурсов в основном осуществляются операционной системой (ОС).

Поддерживаются языки низкого уровня манипулирования данными, ориентированные на навигационные методы доступа к данным.

Значительная роль отводится администрированию данных.

Проводятся серьезные работы по обоснованию и формализации реляционной модели данных, и была создана первая система (System R), реализующая идеологию реляционной модели данных.

Проводятся теоретические работы по оптимизации запросов и управлению распределенным доступом к централизованной БД, было введено понятие транзакции.

Результаты научных исследований открыто обсуждаются в печати, идет мощный поток общедоступных публикаций, касающихся всех аспектов теории и практики баз данных, и результаты теоретических исследований активно внедряются в коммерческие СУБД.

Появляются первые языки высокого уровня для работы с реляционной моделью данных. Однако отсутствуют стандарты для этих первых языков.

Второй этап - эпоха персональных компьютеров

Персональные компьютеры стремительно ворвались в нашу жизнь и буквально перевернули наше представление о месте и роли вычислительной техники в жизни общества. Теперь компьютеры стали ближе и доступнее каждому пользователю. Исчез благоговейный страх рядовых пользователей перед непонятными и сложными языками программирования. Появилось множество программ, предназначенных для работы неподготовленных пользователей. Эти программы были просты в использовании и интуитивно понятны: это, прежде всего, различные редакторы текстов, электронные таблицы и другие. Простыми и понятными стали операции копирования файлов и перенос информации с одного компьютера на другой, распечатка текстов, таблиц и других документов. Системные программисты были отодвинуты на торой план. Каждый пользователь мог себя почувствовать полным хозяином этого мощного и удобного устройства, позволяющего автоматизировать многие аспекты деятельности. И, конечно, это сказалось и на работе с базами данных. Появились программы, которые назывались системами управления базами данных и позволяли хранить значительные объемы информации, они имели удобный интерфейс для заполнения данных, встроенные средства для генерации различных отчетов. Эти программы позволяли автоматизировать многие учетные функции, которые раньше велись вручную. Постоянное снижение цен на персональные компьютеры сделало их доступными не только для организаций и фирм, но и для отдельных пользователей. Компьютеры стали инструментом для ведения документации и собственных учетных функций. Это все сыграло как положительную, так и отрицательную роль в области развития баз данных. Кажущаяся простота и доступность персональных компьютеров и их программного обеспечения породила множество дилетантов. Эти разработчики, считая себя знатоками, стали проектировать недолговечные базы данных, которые не учитывали многих особенностей объектов реального мира. Много было создано систем-однодневок, которые не отвечали законам развития и взаимосвязи реальных объектов. Однако доступность персональных компьютеров заставила пользователей из многих областей знаний, которые ранее не применяли вычислительную технику в своей деятельности, обратиться к ним. И спрос на развитые удобные программы обработки данных заставлял поставщиков программного обеспечения поставлять все новые системы, которые принято называть настольными (desktop) СУБД. Значительная конкуренция среди поставщиков заставляла совершенствовать эти системы, предлагая новые возможности, улучшая интерфейс и быстродействие систем, снижая их стоимость. Наличие на рынке большого числа СУБД, выполняющих сходные функции, потребовало разработки методов экспорта-импорта данных для этих систем и открытия форматов хранения данных.

Но и в этот период появлялись любители, которые вопреки здравому смыслу разрабатывали собственные СУБД, используя стандартные языки программирования. Это был тупиковый вариант, потому что дальнейшее развитие показало, что перенести данные из нестандартных форматов в новые СУБД было гораздо труднее, а в некоторых случаях требовало таких трудозатрат, что легче было бы все разработать заново, но данные все равно надо было переносить на новую более перспективную СУБД. И это тоже было результатом недооценки тех функций, которые должна была выполнять СУБД.

Особенности этого этапа следующие:

Все СУБД были рассчитаны на создание БД в основном с монопольным доступом. И это понятно. Компьютер персональный, он не был подсоединен к сети, и база данных на нем создавалась для работы одного пользователя. В редких случаях предполагалась последовательная работа нескольких пользователей, например, сначала оператор, который вводил бухгалтерские документы, а потом главбух, который определял проводки, соответствующие первичным документам.

Большинство СУБД имели развитый и удобный пользовательский интерфейс, В большинстве существовал интерактивный режим работы с БД, как в рамках описания БД, так и в рамках проектирования запросов. Кроме того, большинство СУБД предлагали развитый и удобный инструментарии для разработки готовых приложений без программирования. Инструментальная среда состояла из готовых элементов приложения в виде шаблонов экранных форм, отчетов, этикеток (Labels), графических конструкторов запросов, которые достаточно просто могли быть собраны в единый комплекс.

Во всех настольных СУБД поддерживался только внешний уровень представления реляционной модели, то есть только внешний табличный вид структур данных.

При наличии высокоуровневых языков манипулирования данными типа реляционной алгебры и SQL в настольных СУБД поддерживались низкоуровневые языки манипулирования данными на уровне отдельных строк таблиц.

В настольных СУБД отсутствовали средства поддержки ссылочной и структурной целостности базы данных. Эти функции должны были выполнять приложения, однако скудость средств разработки приложений иногда не позволяла это сделать, и в этом случае эти функции должны были выполняться пользователем, требуя от него дополнительного контроля при вводе и изменении информации, хранящейся в БД.

Наличие монопольного режима работы фактически привело к вырождению функций администрирования БД и в связи с этим -- к отсутствию инструментальных средств администрирования БД.

И, наконец, последняя и в настоящий момент весьма положительная особенность -- это сравнительно скромные требования к аппаратному обеспечению со стороны настольных СУБД. Вполне работоспособные приложения, разработанные, например, на Clipper, работали на PC 286.

В принципе, их даже трудно назвать полноценными СУБД. Яркие представители этого семейства это очень широко использовавшиеся до недавнего времени СУБД dBase (dBase III+, dBase IV), FoxPro, Clipper, Paradox.

Третий эт ап - распределенные базы данных

Хорошо известно, что история развивается по спирали, поэтому после процесса «персонализации» начался обратный процесс -- интеграция. Множится количество локальных сетей, все больше информации передастся между компьютерами, остро встает задача согласованности данных, хранящихся и обрабатывающихся в разных местах, но логически друг с другом связанных, возникают задачи, связанные с параллельной обработкой транзакций -- последовательностей операций над БД, переводящих ее из одного непротиворечивого состояния в другое непротиворечивое состояние. Успешное решение этих задач приводит к появлению распределенных баз данных, сохраняющих все преимущества настольных СУБД и в то же время позволяющих организовать параллельную обработку информации и поддержку целостности БД.

Особенности данного этапа:

Практически все современные СУБД обеспечивают поддержку полной реляционной модели, а именно:

структурной целостности -- допустимыми являются только данные, представленные в виде отношений реляционной модели;

языковой целостности, то есть языков манипулирования данными высокого уровня (в основном SQL);

ссылочной целостности -- контроля за соблюдением ссылочной целостности в течение всего времени функционирования системы, и гарантий невозможности со стороны СУБД нарушить эти ограничения.

Большинство современных СУБД рассчитаны на многоплатформенную архитектуру, то есть они могут работать на компьютерах с разной архитектурой и под разными операционными системами, при этом для пользователей доступ к данным, управляемым СУБД, на разных платформах практически неразличим.

Необходимость поддержки многопользовательской работы с базой данных и возможность децентрализованного храпения данных потребовали развития средств администрирования БД с реализацией общей концепции средств защиты данных.

Потребность в новых реализациях вызвала создание серьезных теоретических трудов по оптимизации реализации распределенных БД и работе с распределенными транзакциями и запросами с внедрением полученных результатов в коммерческие СУБД.

Для того чтобы не потерять клиентов, которые ранее работали на настольных СУБД, практически все современные СУБД имеют средства подключения клиентских приложений, разработанных с использованием настольных СУБД, и средства экспорта данных из форматов настольных СУБД второго этапа развития.

К этому этапу можно отнести разработку ряда стандартов в рамках языков описания и манипулирования данными (SQL89, SQL92, SQL99) и технологий по обмену данными между различными СУБД, к которым можно отнести и протокол ODBC (Open DataBase Connectivity), предложенный фирмой Microsoft.

Именно к этому этапу можно отнести начало работ, связанных с концепцией объектно-ориентированных БД -- ООБД. Представителями СУБД, относящимся ко второму этапу, можно считать MS Access 97 и все современные серверы баз данных Огас1е7.3, 0гас1е 8.4, MS SQL 6.5, MS SQL 7.0, System 10, System 11, Informix, DB2, SQL Base и другие современные серверы баз данных, которых в настоящий момент насчитывается несколько десятков.

Четвертый этап - перспективы развития систем управления базами данных

Этот этап характеризуется появлением новой технологии доступа к данным -- интранет. Основное отличие этого подхода от технологии клиент-сервер состоит в том, что отпадает необходимость использования специализированного клиентского программного обеспечения. Для работы с удаленной базой данных используется стандартный броузер Internet, например Microsoft Internet Explorer или Netscape Navigator, и для конечного пользователя процесс обращения к данным происходит аналогично скольжению по Всемирной Паутине. При этом встроенный в загружаемые пользователем HTML-страницы код, написанный обычно на языках Java, Java-script, Perl и других, отслеживает все действия пользователя и транслирует их в низкоуровневые SQL-запросы к базе данных, выполняя, таким образом, ту работу, которой в технологии клиент-сервер занимается клиентская программа. Удобство данного подхода привело к тому, что он стал использоваться не только для удаленного доступа к базам данных, но и для пользователей локальной сети предприятия. Простые задачи обработки данных, не связанные со сложными алгоритмами, требующими согласованного изменения данных во многих взаимосвязанных объектах, достаточно просто и эффективно могут быть построены по данной архитектуре. В этом случае для подключения нового пользователя к возможности использовать данную задачу не требуется установка дополнительного клиентского программного обеспечения. Однако алгоритмически сложные задачи рекомендуется реализовывать в архитектуре «клиент-сервер» с разработкой специального клиентского программного обеспечения.

У каждого из вышеперечисленных подходов к работе с данными есть свои достоинства и свои недостатки, которые и определяют область применения того или иного метода, и в настоящее время все подходы широко используются.

Типы данных СУБД MySQL.

Все типы данных, с которыми работает СУБД MySQL можно разбить на три большие группы: числовые, текстовые и даты-времени. Рассмотрим эти типы данных по порядку.

a. Числовые типы

Числовые типы столбцов используются для хранения чисел, все числовые типы можно разбить на два подтипа для хранения точных чисел и чисел с плавающей точкой. Все числовые типы характеризуются длинной хранимых чисел, а типы с плавающей точкой еще и числом десятичных разрядов. Эти значения указываются после объявления типа столбца, например, FLOAT(10, 2). В примере указана длинна числа в 10 символов и два знака после десятичного разделителя. Также объявление числовых типов можно заканчивать ключевыми словами ZEROFILL и (или) USIGNED. Ключевое слово USIGNED означает, что столбец содержит только положительные числа или нули.

ZEROFILL - означает, что число будет отображено с ведущими нулями.

NUMERIC или DECIMAL

Эти типы данных идентичны, а DECIMAL можно сократить до DEC. Эти типы данных используются для хранения чисел с плавающей точкой. Обычно их используют для хранения денежных значений.

Тип данных INTEGER можно сократить до INT. Это просто целое число в заданном диапазоне. Для хранения этого типа данных отводится 4 байта и оно может хранить числа до двух в тридцать второй степени. Также существует несколько вариантов типа INTEGER.

TINYINT - Размер хранения в один байт и соответственно хранит числа от 1 до 127 (один бит знак отрицательности)

SMALLINT - Диапазон значений в два байта

MEDIUMINT - Три байта

BIGINT - Самый большой тип целых чисел диапазон восемь байтов.

Это числа с плавающей точкой с обычной точностью (4 байта). Они могут представлять числа в диапазоне от 1.18 на 10 в минус 38 степени до 3.4на 10 в тридцать восьмой степени.

Числа с плавающей точкой двойной точности(8 байтов) диапазон значений плюс минус десять в триста восьмой степени (ну, очень много).

b. Текстовые типы данных

Тип CHAR используется для хранения строк фиксированной длинны. После ключевого слова CHAR обычно указывается длинна строки, например, CHAR(50) если длинна строки не указана то считается, что длинна равна одному символу. Максимальная длинна поля данного типа равняется 255 символам. Если число переданных в строку символов меньше указанной длинны, то строка будет дополнена пробелами, если больше, то обрезана. При возврате значения пробелы будут удалены из строки.

Тип VARCHAR предназначен для хранения строк переменной длинны. Так же, как и в предыдущем типе данных у VARCHAR задается максимальная длинна строки, например, VARCHAR(30) более длинные строки, переданные в этот столбец, будут обрезаны.

Разница двух описанных типов заключается в том, что по строкам с фиксированной длинной выборка идет намного быстрее. И если Вам важна скорость работы базы данных, то предпочтительно выбирать именно фиксированный тип строки.

Типы полей TEXT используются для хранения более длинных фрагментов текста, чем допускается предыдущими типами. Сокращение BLOB означает большой двоичный объект. Эти два типа одинаковы за исключением того, что в типе BLOB сравнение строк идет с учетом регистра символов, а в типе TEXT без учета регистра. Оба типа имеют переменную длину и оба имеют некоторые вариации:

TINYTEXT и TINYBLOB - Могут хранить до 255 символов

TEXT и BLOB могут хранить до 64 килобайт информации

MEDIUMTEXT и MEDIUMBLOB - до 16 мегабайт

LONGTEXT и LONGBLOB до 4 гигабайт

Этот тип позволяет перечислить набор возможных значений для ввода в поле и хранит только одно значение из представленного списка. Например, ENUM(`m`,`a`,`z`) если не указать какое значение используется в поле по умолчанию, то будет использовано первое значение списка.

Этот тип похож на тип ENUM, но позволяет хранить несколько значений из списка значений в поле.

c. Типы даты и времени.

Тип применяется для хранения дат в формате(гггг-мм-дд)

Хранит время в виде (чч:мм:сс)

Комбинация предыдущих двух типов. формат следующий ГГГГ-ММ-ДД ЧЧ:ММ:СС.

Тип столбца при задании, которого если не указать значение, будет подставлено текущее значение времени, когда строка создана или изменена, при этом значение строки будет отображаться в формате DATETIME.

Тип поля содержит значение года. Возможны две длинны: YEAR(2) и YEAR(4) для двух, и четырех цифр года соответственно. Нужно отметить, что при YEAR(2) диапазон дат принимается с 1970 по 2069 годы.

На этом мы закончим рассмотрение типов данных используемых в СУБД MySQL. В следующей статье мы попробуем научиться изменять и удалять таблицы, а также оптимизировать работу таблиц.

Перспективы развития сетевых баз данных

Термин «системы следующего (или третьего) поколения» вошел в жизнь после опубликования группой известных специалистов в области БД «Манифеста систем баз данных третьего поколения». Сторонники этого направления придерживаются принципа эволюционного развития возможностей СУБД без коренной ломки предыдущих подходов и с сохранением преемственности с системами предыдущего поколения.

Частично требования к системам следующего поколения означает просто необходимость реализации давно известных свойств, отсутствующих в большинстве текущих реляционных СУБД (ограничения целостности, триггеры, модификация БД через представления и т.д.). В число новых требований входит полнота системы типов, поддерживаемых в СУБД; поддержка иерархии и наследования типов; возможность управления сложными объектами и т.д.

Одной из наиболее известных СУБД третьего поколения является система Postgres, а создатель этой системы М. Стоунбрекер, по всей видимости, является вдохновителем всего направления. В Postgres реализованы многие интересные средства: поддерживается темпоральная модель хранения и доступа к данным и в связи с этим абсолютно пересмотрен механизм журнализации изменений, откатов транзакций и восстановления БД после сбоев; обеспечивается мощный механизм ограничений целостности; поддерживаются ненормализованные отношения (работа в этом направлении началась еще в среде Ingres), хотя и довольно странным способом: в поле отношения может храниться динамически выполняемый запрос к БД.

Одно свойство системы Postgres сближает ее с объектно-ориентированными СУБД. В Postgres допускается хранение в полях отношений данных абстрактных, определяемых пользователями типов. Это обеспечивает возможность внедрения поведенческого аспекта в БД, т.е. решает ту же задачу, что и ООБД, хотя, конечно, семантические возможности модели данных Postgres существенно слабее, чем у объектно-ориентированных моделей данных.

Хотя отнесение СУБД к тому или иному классу в настоящее время может быть выполнено только условно (например, иногда объектно-ориентированную СУБД O2 относят к системам следующего поколения), можно отметить три направления в области СУБД следующего поколения. Чтобы не изобретать названий, будем обозначать их именами наиболее характерных СУБД.

1. Направление Postgres. Основная характеристика: максимальное следование (насколько это возможно с учетом новых требований) известным принципам организации СУБД (если не считать упоминавшейся коренной переделки системы управления внешней памятью).

2. Направление Exodus/Genesis. Основная характеристика: создание собственно не системы, а генератора систем, наиболее полно соответствующих потребностям приложений. Решение достигается путем создания наборов модулей со стандартизованными интерфейсами, причем идея распространяется вплоть до самых базисных слоев системы.

3. Направление Starburst. Основная характеристика: достижение расширяемости системы и ее приспосабливаемости к нуждам конкретных приложений путем использования стандартного механизма управления правилами. По сути дела, система представляет собой некоторый интерпретатор системы правил и набор модулей-действий, вызываемых в соответствии с этими правилами. Можно изменять наборы правил (существует специальный язык задания правил) или изменять действия, подставляя другие модули с тем же интерфейсом.

В целом можно сказать, что СУБД следующего поколения - это прямые наследники реляционных систем.

Список литературы

1. Браун М., Ханикатт Д. “HTML 3.2”, К., 2006

2. Вьюкова Н.И., Галатенко В.А., “Информационная безопасность систем управления базами данных”, СУБД № 1 2001

3. Грабер М., “Справочное руководство по SQL”, М., 2002

4. Дейта К. “Введение в системные баз данных”, М., 1999

5. Дунаев С.Б. “Intranet-технологии.”, М., 1997

6. Кириллов В.В. “Структуризованный язык запросов (SQL)”, М.,1997

7. Кузнецов С.Д. “Основы современных баз данных”, К., 1999

8. Кузнецов С.Д. “Безопасность и целостность или, Худший враг себе - это ты сам”, СПб., 1998

9. Мейер М. “Теория реляционных баз данных”, М.,2006

10. ЦНИТ НГУ. “Использование технологий WWW для доступа к базам данных”, Н., 1997

11. Шпеник М., Следж О. и др. “Руководство администратора баз данных Microsoft SQL Server 7.0”, М., 1999

12. "SQL Полное руководство" К., 2008

Подобные документы

    Предпосылки появления и история эволюции баз данных (БД и СУБД). Основные типы развития систем управления базами данных. Особенности и черты Access. Создание и ввод данных в ячейки таблицы. Сортировка и фильтрация. Запрос на выборку, основные связи.

    презентация , добавлен 01.12.2015

    Тенденция развития систем управления базами данных. Иерархические и сетевые модели СУБД. Основные требования к распределенной базе данных. Обработка распределенных запросов, межоперабельность. Технология тиражирования данных и многозвенная архитектура.

    реферат , добавлен 29.11.2010

    Термины "логический" и "физический" как отражение различия аспектов представления данных. Методы доступа к записям в файлах. Структура систем управления базами данных. Отличительные особенности обработки данных, характерные для файловых систем и СУБД.

    лекция , добавлен 19.08.2013

    Основные понятия базы данных и систем управления базами данных. Типы данных, с которыми работают базы Microsoft Access. Классификация СУБД и их основные характеристики. Постреляционные базы данных. Тенденции в мире современных информационных систем.

    курсовая работа , добавлен 28.01.2014

    Общее понятие и признаки классификации информационных систем. Типы архитектур построения информационных систем. Основные компоненты и свойства базы данных. Основные отличия файловых систем и систем баз данных. Архитектура клиент-сервер и ее пользователи.

    презентация , добавлен 22.01.2016

    Логическая организация данных, файловая модель. Сетевые, иерархические и реляционные модели данных. Системы управления базами данных, их определения и основные понятия. История, тенденции развития, классификация СУБД, свойства и технология использования.

    дипломная работа , добавлен 26.07.2009

    Система управления базами данных как составная часть автоматизированного банка данных. Структура и функции системы управления базами данных. Классификация СУБД по способу доступа к базе данных. Язык SQL в системах управления базами данных, СУБД Microsoft.

    реферат , добавлен 01.11.2009

    Причины возникновения объектных СУБД. Основные принципы осуществления концепции объективно-ориентированного подхода, история и этапы ее развития. Наиболее значительные недостатки реляционной модели данных и реляционных баз данных. Перспективы их развития.

    курсовая работа , добавлен 02.03.2014

    Базы данных с двумерными файлами и реляционные системы управления базами данных (СУБД). Создание базы данных и обработка запросов к ним с помощью СУБД. Основные типы баз данных. Базовые понятия реляционных баз данных. Фундаментальные свойства отношений.

    реферат , добавлен 20.12.2010

    Классификации баз данных по характеру сберегаемой информации, способу хранения данных и структуре их организации. Современные системы управления базами данных и программы для их создания: Microsoft Office Access, Cronos Plus, Base Editor, My SQL.

























1 из 24

Презентация на тему: История развития баз данных

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Введение В истории вычислительной техники можно проследить развитие двух основных областей ее использования. Первая область - применение вычислительной техники для выполнения численных расчетов, которые слишком долго или вообще невозможно производить вручную. Вторая область - это использование средств вычислительной техники в автоматических или автоматизированных информационных системах.

№ слайда 3

Описание слайда:

Вторая область использования вычислительной техники возникла несколько позже первой. Это связано с тем, что на заре вычислительной техники возможности компьютеров по хранению информации были очень ограниченными. Поэтому появление съемных магнитных дисков с подвижными головками явилось революцией в истории вычислительной техники. С их появлением началась история систем управления данными во внешней памяти, произошел переход к использованию централизованных систем управления файлами.

№ слайда 4

Описание слайда:

Недостатки файловых систем 1. Избыточность данных. Файловые системы характеризуются значительной избыточностью, поскольку нередко для решения различных задач управления используются одни и одни и те же данные, размещенные в разных файлах. Из-за дублирования данных в разных файлах память на внешних запоминающих устройствах используется неэкономно, информация одного и одного и того же объекта управления распределяется между многими файлами. При этом довольно тяжело представить общую информационную модель предметной области.

№ слайда 5

Описание слайда:

2. Несогласованность данных. Учитывая, что одна и одна и та же информация может размещаться в разных файлах, технологически тяжело проследить за внесением изменений одновременно во все файлы. Из-за этого может возникнуть несогласованность данных, когда одно и одно и то же поле в разных файлах может иметь разные значения.

№ слайда 6

Описание слайда:

3. Зависимость структур данных и прикладных программ. При файловой организации логическая и физическая структуры файла должны соответствовать их описанию в прикладной программе. Прикладная программа должна быть модифицирована при любом изменении логической или физической структуры файла. Поскольку изменения в одной программе часто требуют внесения изменений в другие информационно- связанные программы, то иногда проще создать новую программу, чем вносить изменения в старую. Поэтому этот недостаток файловых систем приводит к значительному увеличению стоимости сопровождения программных средств. Иногда стоимость сопровождения программных средств может достигать близко 70 % стоимости их разработки.

№ слайда 7

Описание слайда:

Эти недостатки послужили тем толчком, который заставил разработчиков информационных систем предложить новый подход к управлению информацией. Этот подход был реализован в рамках новых программных систем, названных впоследствии Системами Управления Базами Данных (СУБД), а сами хранилища информации, которые работали под управлением данных систем, назывались базами или банками данных (БД и БнД).

№ слайда 8

Описание слайда:

Появление СУБД История развития СУБД насчитывает более 30 лет. В 1968 году была введена в эксплуатацию первая промышленная СУБД система IMS фирмы IBM. В1975 году появился первый стандарт ассоциации по языкам систем обработки данных - Conference of Data System Languages (CODASYL), который определил ряд фундаментальных понятий в теории систем баз данных, которые и до сих пор являются основополагающими для сетевой модели данных. В дальнейшее развитие теории баз данных большой вклад был сделан американским математиком Э. Ф. Коддом, который является создателем реляционной модели данных. В 1981 году Э. Ф. Кодд получил за создание реляционной модели и реляционной алгебры престижную премию Тьюринга Американской ассоциации по вычислительной технике.

№ слайда 9

Описание слайда:

Первый этап - базы данных на больших ЭВМ Первый этап развития СУБД связан с организацией баз данных на больших машинах типа IBM 360/370, ЕС-ЭВМ и мини-ЭВМ типа PDP11 (фирмы Digital Equipment Corporation - DEC), разных моделях HP (фирмы Hewlett Packard). Базы данных хранились во внешней памяти центральной ЭВМ, пользователями этих баз данных были задачи, запускаемые в основном в пакетном режиме. Интерактивный режим доступа обеспечивался с помощью консольных терминалов, которые не обладали собственными вычислительными ресурсами (процессором, внешней памятью) и служили только устройствами ввода-вывода для центральной ЭВМ.

№ слайда 10

Описание слайда:

Программы доступа к БД писались на различных языках и запускались как обычные числовые программы. Мощные операционные системы обеспечивали возможность условно параллельного выполнения всего множества задач. Эти системы можно было отнести к системам распределенного доступа, потому что база данных была централизованной, хранилась на устройствах внешней памяти одной центральной ЭВМ, а доступ к ней поддерживался от многих пользователей- задач. Появляются первые языки высокого уровня для работы с реляционной моделью данных. Однако отсутствуют стандарты для этих первых языков.

№ слайда 11

Описание слайда:

Особенности первого этапа Все СУБД базируются на мощных мультипрограммных операционных системах (MVS, SVM, RTE, OSRV, RSX, UNIX), поэтому в основном поддерживается работа с централизованной базой данных в режиме распределенного доступа. Функции управления распределением ресурсов в основном осуществляются операционной системой (ОС). Поддерживаются языки низкого уровня манипулирования данными, ориентированные на навигационные методы доступа к данным. Значительная роль отводится администрированию данных.

№ слайда 12

Описание слайда:

Проводятся серьезные работы по обоснованию и формализации реляционной модели данных, и была создана первая система (System R), реализующая идеологию реляционной модели данных. Проводятся теоретические работы по оптимизации запросов и управлению распределенным доступом к централизованной БД, было введено понятие транзакции. Результаты научных исследований открыто обсуждаются в печати, идет мощный поток общедоступных публикаций, касающихся всех аспектов теории и практики баз данных, и результаты теоретических исследований активно внедряются в коммерческие СУБД.

№ слайда 13

Описание слайда:

Второй этап - эпоха персональных компьютеров Появляется множество программ, предназначенных для работы неподготовленных пользователей. Эти программы просты в использовании и интуитивно понятны: это, прежде всего, различные редакторы текстов, электронные таблицы и другие. Каждый пользователь может автоматизировать многие аспекты деятельности. И, конечно, это сказалось и на работе с базами данных. Появились программы, которые назывались системами управления базами данных и позволяли хранить значительные объемы информации, они имели удобный интерфейс для заполнения данных, встроенные средства для генерации различных отчетов. Эти программы позволяли автоматизировать многие учетные функции, которые раньше велись вручную. Компьютеры стали инструментом для ведения документации и собственных учетных функций. Это все сыграло как положительную, так и отрицательную роль в области развития баз данных.

№ слайда 14

Описание слайда:

Кажущаяся простота и доступность персональных компьютеров и их программного обеспечения породила множество дилетантов. Эти разработчики, считая себя знатоками, стали проектировать недолговечные базы данных, которые не учитывали многих особенностей объектов реального мира. Много было создано систем-однодневок, которые не отвечали законам развития и взаимосвязи реальных объектов. Однако доступность персональных компьютеров заставила пользователей из многих областей знаний, которые ранее не применяли вычислительную технику в своей деятельности, обратиться к ним. И спрос на развитые удобные программы обработки данных заставлял поставщиков программного обеспечения поставлять все новые системы, которые принято называть настольными (desktop) СУБД. Значительная конкуренция среди поставщиков заставляла совершенствовать эти системы, предлагая новые возможности, улучшая интерфейс и быстродействие систем, снижая их стоимость. Наличие на рынке большого числа СУБД, выполняющих сходные функции, потребовало разработки методов экспорта- импорта данных для этих систем и открытия форматов хранения данных.

№ слайда 15

Описание слайда:

Особенности второго этапа Все СУБД были рассчитаны на создание БД в основном с монопольным доступом. И это понятно. Компьютер персональный, он не был подсоединен к сети, и база данных на нем создавалась для работы одного пользователя. В редких случаях предполагалась последовательная работа нескольких пользователей, например, сначала оператор, который вводил бухгалтерские документы, а потом главбух, который определял проводки, соответствующие первичным документам. Большинство СУБД имели развитый и удобный пользовательский интерфейс, В большинстве существовал интерактивный режим работы с БД, как в рамках описания БД, так и в рамках проектирования запросов. Кроме того, большинство СУБД предлагали развитый и удобный инструментарии для разработки готовых приложений без программирования. Инструментальная среда состояла из готовых элементов приложения в виде шаблонов экранных форм, отчетов, этикеток (Labels), графических конструкторов запросов, которые достаточно просто могли быть собраны в единый комплекс. Во всех настольных СУБД поддерживался только внешний уровень представления реляционной модели, то есть только внешний табличный вид структур данных.

№ слайда 16

Описание слайда:

При наличии высокоуровневых языков манипулирования данными типа реляционной алгебры и SQL в настольных СУБД поддерживались низкоуровневые языки манипулирования данными на уровне отдельных строк таблиц. В настольных СУБД отсутствовали средства поддержки ссылочной и структурной целостности базы данных. Эти функции должны были выполнять приложения, однако скудость средств разработки приложений иногда не позволяла это сделать, и в этом случае эти функции должны были выполняться пользователем, требуя от него дополнительного контроля при вводе и изменении информации, хранящейся в БД. Наличие монопольного режима работы фактически привело к вырождению функций администрирования БД и в связи с этим - к отсутствию инструментальных средств администрирования БД. И, наконец, последняя и в настоящий момент весьма положительная особенность - это сравнительно скромные требования к аппаратному обеспечению со стороны настольных СУБД. Вполне работоспособные приложения, разработанные, например, на Clipper, работали на PC 286.

№ слайда 17

Описание слайда:

Третий этап - распределенные базы данных Хорошо известно, что история развивается по спирали, поэтому после процесса «персонализации» начался обратный процесс - интеграция. Множится количество локальных сетей, все больше информации передастся между компьютерами, остро встает задача согласованности данных, хранящихся и обрабатывающихся в разных местах, но логически друг с другом связанных, возникают задачи, связанные с параллельной обработкой транзакций - последовательностей операций над БД, переводящих ее из одного непротиворечивого состояния в другое непротиворечивое состояние. Успешное решение этих задач приводит к появлению распределенных баз данных, сохраняющих все преимущества настольных СУБД и в то же время позволяющих организовать параллельную обработку информации и поддержку целостности БД.

№ слайда 18

Описание слайда:

Особенности третьего этапа Практически все современные СУБД обеспечивают поддержку полной реляционной модели, а именно: структурной целостности - допустимыми являются только данные, представленные в виде отношений реляционной модели; языковой целостности, то есть языков манипулирования данными высокого уровня (в основном SQL); ссылочной целостности - контроля за соблюдением ссылочной целостности в течение всего времени функционирования системы, и гарантий невозможности со стороны СУБД нарушить эти ограничения. Большинство современных СУБД рассчитаны на многоплатформенную архитектуру, то есть они могут работать на компьютерах с разной архитектурой и под разными операционными системами, при этом для пользователей доступ к данным, управляемым СУБД, на разных платформах практически неразличим.

№ слайда 19

Описание слайда:

Необходимость поддержки многопользовательской работы с базой данных и возможность децентрализованного храпения данных потребовали развития средств администрирования БД с реализацией общей концепции средств защиты данных. Потребность в новых реализациях вызвала создание серьезных теоретических трудов по оптимизации реализации распределенных БД и работе с распределенными транзакциями и запросами с внедрением полученных результатов в коммерческие СУБД. Для того чтобы не потерять клиентов, которые ранее работали на настольных СУБД, практически все современные СУБД имеют средства подключения клиентских приложений, разработанных с использованием настольных СУБД, и средства экспорта данных из форматов настольных

№ слайда 20

Описание слайда:

СУБД третьего этапа развития К этому этапу можно отнести разработку ряда стандартов в рамках языков описания и манипулирования данными (SQL89, SQL92, SQL99) и технологий по обмену данными между различными СУБД, к которым можно отнести и протокол ODBC (Open DataBase Connectivity), предложенный фирмой Microsoft. Так же к этому этапу можно отнести начало работ, связанных с концепцией объектно-ориентированных БД - ООБД. Представителями СУБД, относящимся ко второму этапу, можно считать MS Access 97 и все современные серверы баз данных Огас1е7.3, 0гас1е 8.4, MS SQL 6.5, MS SQL 7.0, System 10, System 11, Informix, DB2, SQL Base и другие современные серверы баз данных, которых в настоящий момент насчитывается несколько десятков.

№ слайда 21

Описание слайда:

Четвертый этап - перспективы развития систем управления базами данных Этот этап характеризуется появлением новой технологии доступа к данным- интранет. Основное отличие этого подхода от технологии клиент-сервер состоит в том, что отпадает необходимость использования специализированного клиентского программного обеспечения. Для работы с удаленной базой данных используется стандартный броузер Internet, например Microsoft InternetExplorer, и для конечного пользователя процесс обращения к данным происходит аналогично использованию Internet. При этом встроенный в загружаемые пользователем HTML-страницы код, написанный обычно на языках Java, Java-script, Perl и других, отслеживает все действия пользователя и транслирует их в низкоуровневые SQL-запросы к базе данных, выполняя, таким образом, ту работу, которой в технологии клиент-сервер занимается клиентская программа.

№ слайда 22

Описание слайда:

Удобство данного подхода привело к тому, что он стал использоваться не только для удаленного доступа к базам данных, но и для пользователей локальной сети предприятия. Простые задачи обработки данных, не связанные со сложными алгоритмами, требующими согласованного изменения данных во многих взаимосвязанных объектах, достаточно просто и эффективно могут быть построены по данной архитектуре. В этом случае для подключения нового пользователя к возможности использовать данную задачу не требуется установка дополнительного клиентского программного обеспечения. Однако алгоритмически сложные задачи рекомендуется реализовывать в архитектуре «клиент-сервер» с разработкой специального клиентского программного обеспечения.

Обзор программных продуктов для разработки систем управления базами данных

Пятая нормальная форма

Четвертая нормальная форма

Нормальная форма Бойса – Кодда

Таблица находится в нормальной форме Бойса – Кодда только в том случае, если любая функциональная зависимость между ее полями сводится к полной функциональной зависимости от возможного ключа.

Согласно данному определению в структуре базы данных все таблицы соответствуют требованиям нормальной формы Бойса – Кодда.

Дальнейшая оптимизация таблиц баз данных должна сводиться к полной декомпозиции таблиц.

Полной декомпозицией таблицы называют такую совокупность произвольного числа ее проекций, соединение которых полностью совпадает с содержимым таблицы.

Четвертая нормальная форма является частным случаем пятой нормальной формы, когда полная декомпозиция должна быть соединением двух проекций. Очень трудно найти такую таблицу, чтобы она находилась в четвертой нормальной форме, но не удовлетворяла определению пятой нормальной формы.

Таблица находится в пятой нормальной форме тогда и только тогда, когда в каждой ее полной декомпозиции все проекции содержат возможный ключ. Таблица, не имеющая ни одной полной декомпозиции, также находится в пятой нормальной форме.

На практике оптимизация таблиц базы данных заканчивается третьей нормальной формой. Приведение таблиц к четвертой и пятой нормальным формам представляет чисто теоретический интерес. Практически эта проблема решается разработкой запросов на создание новой таблицы.

На ранних стадиях разработки информационно - поисковых систем разрабатывались специальные языки манипулирования данными (ЯМД) – языки запросов. Они были ориентированы на операции с данными, представленными в виде иерархически связанных файлов, и имели соответствующие алгоритмы поиска информации.

Появление реляционных баз данных создало предпосылки для других, более быстрых алгоритмов поиска информации.

Для обработки информации, структурированной в виде таблиц – двумерных массивов, в конце 70-х гг. ХХ в. фирмой IBM был разработан соответствующий язык, который в дальнейшем получил название Structured Query Language (SQL) – язык структурированных запросов. В настоящее время SQL является международным стандартом языка обработки данных в реляционных СУБД. Язык является ядром всех программных продуктов для разработки СУБД.

Наибольшее распространение среди пользователей и разработчиков СУБД получили следующие программные продукты:

Специальные языки программирования – Visual FoxPro, SQL, MS SQL-Server

Прикладные программные системы – Microsoft Access, Oracle и др.

Рассмотрим некоторые характеристики данных программных средств.

Рост производительности персональных вычислительных машин спровоцировал развитие СУБД, как отдельного класса. К середине 60-х годов прошлого века уже существовало большое количество коммерческих СУБД. Интерес к базам данных увеличивался все больше, так что данная сфера нуждалась в стандартизации. Автор комплексной базы данных Integrated Data Store Чарльз Бахман (Charles Bachman) организовал целевую группу DTG (Data Base Task Group) для утверждения особенностей и организации стандартов БД в рамках CODASYL - группы, которая отвечала за стандартизацию языка программирования COBOL. Уже в 1971 году был представлен свод утверждений и замечаний, который был назван Подход CODASYL, и спустя некоторое время появились первые успешные коммерческие продукты, изготовленные с учетом замечаний вышеупомянутой рабочей группы. В 1968 году отметилась и компания IBM, которая представила собственную СУБД под названием IMS. Фактически данный продукт представлял собой компиляцию утилит, которые использовались с системами System/360 на шаттлах Аполлон. Решение было разработано согласно коцпетам CODASYL, но при этом была применена строгая иерархия для структуризации данных. В свою очередь в варианте CODASYL за базис была взята сетевая СУБД. Оба варианта, меж тем, были приняты сообществом позднее как классические варианты организации работы СУБД, а сам Чарльз Бахман в 1973 году получил премию Тьюринга за работу Программист как навигатор. В 1970 году сотрудник компании IBM Эдгар Кодд, работавший в одном из отделений Сан Хосе (США), в котором занимались разработкой систем хранения, написал ряд статей, касающихся навигационных моделей СУБД. Заинтересовавшись вопросом он разработал и изложил несколько инновационных подходов касательно оптимальной организаци систем управления БД. Работа Кодда внесла значительный вклад в развитие СУБД и является действительным основоположником теории реляционных баз данных. Уже 1981 году Э.Ф.Кодд создал реляционную модель данных и применил к ней операции реляционной алгебры.

Первый этап развития БД – базы данных на больших ЭВМ

История развития СУБД насчитывает более 30 лет.

В 1968 году была введена в эксплуатацию первая промышленная СУБД IMS фирмы IBM.

В 1975 году появился первый стандарт ассоциации по языкам систем обработки данных – Conference of Data System Languages (CODASYL), который определил ряд фундаментальных понятий в теории систем баз данных, которые и до сих пор являются основополагающими для сетевой модели данных.

В дальнейшее развитие теории баз данных большой вклад был сделан американским математиком Э.Ф. Коддом, который является создателем реляционной модели данных.

Развитие персональных ЭВМ и появление мощных рабочих станций и сетей ЭВМ повлияло также и на развитие технологии баз данных.

Можно выделить четыре этапа в развитии данного направления в обработке данных. Однако необходимо заметить, что всё же нет жёстких временных ограничений в этих этапах: они плавно переходят один в другой и даже сосуществуют параллельно, но тем не менее выделение этих этапов позволит более чётко охарактеризовать отдельные стадии развития технологии баз данных, подчеркнуть особенности, специфичные для конкретного этапа.

Первый этап развития СУБД связан с организацией баз данных на больших машинах типа IBM 360/370, ЕС-ЭВМ и мини-ЭВМ типа PDP11 (фирмы Digital Equipment Corporation – DEC), разных моделях HP (фирмы Hewlett Packard).

Базы данных хранились во внешней памяти центральной ЭВМ, пользователями этих баз данных были задачи, запускаемые в основном в пакетном режиме. Интерактивный режим доступа обеспечивался с помощью консольных терминалов, которые не обладали собственными вычислительными ресурсами (процессором, внешней памятью) и служили только устройствами ввода-вывода для центральной ЭВМ.

Программы доступа к БД писались на различных языках и запускались как обычные «числовые программы».

Мощные операционные системы обеспечивали возможность условно параллельного выполнения всего множества задач. Эти системы можно было отнести к системам распределённого доступа, потому что база данных была централизованной, хранилась на устройствах внешней памяти одной центральной ЭВМ, а доступ к ней поддерживался от многих пользователей-задач.

Особенности этого этапа развития выражаются в следующем:

    все СУБД базируются на мощных мультипрограммных операционных системах (MVS, SVM, RTE, OSRV, RSX, UNIX), поэтому в основном поддерживается работа с централизованной базой данных в режиме распределённого доступа;

    функции управления распределением ресурсов в основном осуществляются операционной системой;

    поддерживаются языки низкого уровня манипулирования данными, ориентированные на навигационные методы доступа к данным;

    значительная роль отводится администрированию данных;

    проводятся серьёзные работы по обоснованию и формализации реляционной модели данных;

    проводятся теоретические работы по оптимизации запросов и управлению распределённым доступом к централизованной БД, было введено понятие транзакции;

    появляются первые языки высокого уровня для работы с реляционной моделью данных, однако отсутствуют стандарты для этих первых языков.

Второй этап – «эпоха персональных компьютеров»

На этом этапе появилось множество программ, предназначенных для работы неподготовленных пользователей.

Простыми и понятными стали операции копирования файлов и перенос информации с одного компьютера на другой.

Появились программы, которые назывались системами управления базами данных и позволяли хранить значительные объёмы информации, они имели удобный интерфейс для заполнения данных и встроенные средства для генерации различных отчётов.

Эти программы позволяли автоматизировать многие учётные функции, которые раньше велись вручную.

Компьютеры стали инструментом для ведения документации и собственных учётных функций организациями и отдельными пользователями.

Это всё сыграло как положительную, так и отрицательную роль в области развития баз данных.

Кажущаяся простота и доступность персональных компьютеров и их программного обеспечения породила множество дилетантов.

Эти разработчики, считая себя знатоками, стали проектировать недолговечные базы данных, которые не учитывали многих особенностей объектов реального мира.

Было создано много систем-однодневок, которые не отвечали законам развития и взаимосвязи реальных объектов.

Однако спрос на развитые удобные программы обработки данных заставлял поставщиков программного обеспечения поставлять всё новые системы, которые принято называть настольными (desktop) СУБД.

Значительная конкуренция среди поставщиков заставляла совершенствовать эти системы, предлагая новые возможности, улучшая интерфейс и быстродействие систем, снижая их стоимость.

Наличие на рынке большого числа СУБД, выполняющих сходные функции, потребовало разработки методов экспорта-импорта данных для этих систем и открытия форматов хранения данных.

Но и в этот период появлялись любители, которые вопреки здравому смыслу разрабатывали собственные БД, используя стандартные языки программирования.

Это был тупиковый вариант, потому что дальнейшее развитие показало, что перенести данные из нестандартных форматов в новые СУБД было гораздо труднее, а в некоторых случаях требовало таких трудозатрат, что легче было бы все разработать заново.

Особенности этого этапа таковы:

    все СУБД были рассчитаны на создание БД в основном с монопольным доступом (т.к. компьютер – персональный и не подсоединён к сети);

    в редких случаях предполагалась последовательная работа нескольких пользователей, например, сначала оператор, который вводил бухгалтерские документы, а потом главбух, который определял проводки, соответствующие первичным документам;

    большинство СУБД имели развитый и удобный пользовательский интерфейс;

    большинство СУБД предлагали развитый и удобный инструментарий для разработки готовых приложений без программирования;

    инструментальная среда состояла из готовых элементов приложения в виде шаблонов экранных форм, отчётов, графических конструкторов запросов, которые достаточно просто могли быть собраны в единый комплекс;

Вам это всё ничего не напоминает?

Да-да, Microsoft Access.

    во всех настольных СУБД поддерживался только внешний уровень представления реляционной модели, то есть только внешний табличный вид структур данных;

    при наличии высокоуровневых языков манипулирования данными типа реляционной алгебры и SQL в настольных СУБД поддерживались низкоуровневые языки манипулирования данными на уровне отдельных строк таблиц;

    в настольных СУБД отсутствовали средства поддержки ссылочной и структурной целостности базы данных, эти функции должны были выполнять приложения;

    наличие монопольного режима работы фактически привело к вырождению функций администрирования БД и в связи с этим – к отсутствию инструментальных средств администрирования БД;

    требования к аппаратному обеспечению со стороны настольных СУБД были сравнительно скромными.

Яркие представители этого семейства – очень широко использовавшиеся до недавнего времени СУБД Dbase (DbaseIII+, DbaseIV), FoxPro, Clipper, Paradox.

Также по непонятным причинам до сих пор используется уже упомянутый MS-Access, на котором, по хорошему, можно построить именно однопользовательскую БД или БД на «отдел из 2-3 человек» (и то уже могут быть проблемы).

Третий этап – распределённые базы данных

После процесса «персонализации» начался обратный процесс – интеграция.

С развитием компьютерных сетей остро встала задача согласованности данных, логически связанных друг с другом, но хранящихся и обрабатывающихся в разных местах.

Возникли задачи, связанные с параллельной обработкой транзакций последовательностей операций над БД, переводящих её из одного непротиворечивого состояния в другое непротиворечивое состояние .

Успешное решение этих задач приводит к появлению распределённых баз данных, сохраняющих все преимущества настольных СУБД и в то же время позволяющих организовать параллельную обработку информации и поддержку целостности БД.

Особенности данного этапа:

    практически все современные СУБД обеспечивают поддержку полной реляционной модели;

    большинство современных СУБД рассчитаны на многоплатформенную архитектуру, то есть они могут работать на компьютерах с разной архитектурой и под разными операционными системами, при этом для пользователей доступ к данным, управляемым СУБД на разных платформах, практически неразличим;

    необходимость поддержки многопользовательской работы с базой данных и возможность децентрализованного хранения данных потребовали развития средств администрирования БД с реализацией общей концепции средств защиты данных;

    потребность в реализации новых СУБД вызвала создание серьёзных теоретических трудов по оптимизации распределённых БД и работе с распределёнными транзакциями и запросами;

    чтобы не потерять клиентов, которые ранее работали на настольных СУБД, практически все современные СУБД имеют средства подключения клиентских приложений, разработанных с использованием настольных СУБД, и средства экспорта данных из форматов настольных СУБД второго этапа развития;

    именно к этому этапу можно отнести разработку ряда стандартов в рамках языков описания и манипулирования данными начиная с SQL89, SQL92, SQL99 (и т.д.) и технологий по обмену данными между различными СУБД, к которым можно отнести и протокол ODBC (Open DataBase Connectivity), предложенный фирмой Microsoft;

    именно к этому этапу можно отнести начало работ, связанных с концепцией объектно-ориентированных БД – ООБД.

Первыми представителями СУБД, относящимся к этому этапу, можно считать Oracle7.3, Oracle 8.4 MS SQL6.5, MS SQL7.0, System 10, System 11, Informix, DB2, SQL Base и т.п.

Четвёртый этап – дальнейшее развитие

Этот этап характеризуется появлением новой технологии доступа к данным – «интернет/интранет-доступ».

Основное отличие этого подхода от технологии клиент-сервер состоит в том, что отпадает необходимость использования специализированного клиентского программного обеспечения.

Для работы с удалённой БД используется стандартный веб-браузер.

При этом код, написанный обычно на т.н. «языках веб-программирования» (Java, PHP, Perl, C#, ASP.Net) отслеживает все действия пользователя и транслирует их в низкоуровневые SQL-запросы к базе данных, выполняя, таким образом, ту работу, которой в технологии клиент-сервер занимается клиентская программа.

Удобство данного подхода привело к тому, что он стал использоваться не только для удалённого доступа к базам данных, но и для пользователей локальной сети предприятия, т.к. для подключения нового пользователя не требуется установка дополнительного клиентского программного обеспечения.

У каждого из вышеперечисленных подходов к работе с данными есть свои достоинства и свои недостатки, которые и определяют область применения того или иного метода, и в настоящее время все подходы широко используются.









2024 © radiocodes.ru.